A Global Transcriptome Analysis Reveals Molecular Hallmarks of Neural Stem Cell Death, Survival, and Differentiation in Response to Partial FGF-2 and EGF Deprivation

نویسندگان

  • Vanesa Nieto-Estévez
  • Jaime Pignatelli
  • Marcos J. Araúzo-Bravo
  • Anahí Hurtado-Chong
  • Carlos Vicario-Abejón
چکیده

Neurosphere cell culture is a commonly used model to study the properties and potential applications of neural stem cells (NSCs). However, standard protocols to culture NSCs have yet to be established, and the mechanisms underlying NSC survival and maintenance of their undifferentiated state, in response to the growth factors FGF-2 and EGF are not fully understood. Using cultures of embryonic and adult olfactory bulb stem cells (eOBSCs and aOBSCs), we analyzed the consequences of FGF-2 and EGF addition at different intervals on proliferation, cell cycle progression, cell death and differentiation, as well as on global gene expression. As opposed to cultures supplemented daily, addition of FGF-2 and EGF every 4 days significantly reduced the neurosphere volume and the total number of cells in the spheres, mainly due to increased cell death. Moreover, partial FGF-2 and EGF deprivation produced an increase in OBSC differentiation during the proliferative phase. These changes were more evident in aOBSC than eOBSC cultures. Remarkably, these effects were accompanied by a significant upregulation in the expression of endogenous Fgf-2 and genes involved in cell death and survival (Cryab), lipid catabolic processes (Pla2g7), cell adhesion (Dscaml1), cell differentiation (Dscaml1, Gpr17, S100b, Ndrg2) and signal transduction (Gpr17, Ndrg2). These findings support that a daily supply of FGF-2 and EGF is critical to maintain the viability and the undifferentiated state of NSCs in culture, and they reveal novel molecular hallmarks of NSC death, survival and the initiation of differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation, Induction of Neural and Glial Differentiation and Evaluating the Expression of Five Self Renewal Genes in Adult Mouse Neural Stem Cells

Purpose: Isolation, induction of neural and glial differentiation and evaluating the expression of Nucleostemin, ZFX, Hoxb-4, Sox-9 & Bmi-1 self renewal genes in adult mouse neural stem cells. Materials and Methods: Breifly, for isolation of neural stem cells, frontal part of adult mouse brain was minced in PBS and digested by enzyme solution, containing hyaloronidase and trypsin. Isolated cel...

متن کامل

Study on Effect of Head, Tail, and Limbud extracts of Mouse on Differentiation of Hair Follicle Stem Cells to Neural cells

Introduction: Adult stem cells are the group of cells which conserve their nature in tissues and organs among other cells. In recent years, the researchers reported the existence of stem cells on the Bulge of hair follicles near to the smooth muscle. It is possible to differentiate these stem cells to neural cells by induction of Shh, FGF, and RA factors. Because of existence of these factors ...

متن کامل

Analysis of Promyelocytic Leukemia in Human Embryonic Carcinoma Stem Cells During Retinoic Acid-Induced Neural Differentiation

Background: Promyelocytic leukemia protein (PML) is a tumor suppressor protein that is involved in myeloid cell differentiation in response to retinoic acid (RA). In addition, RA acts as a natural morphogen in neural development. Objectives: This study aimed to examine PML gene expression in different stages of in vitro neural differentiation of NT2 cells, and to investigate the possible role o...

متن کامل

In Vitro Differentiation of Neural Stem Cells into Noradrenergic-Like Cells

Neural stem cells (NSCs) as a heterogeneous multipotent and self- renewal population are found in different areas in the developing mammalian nervous system, as well as the sub-ventricular zone (SVZ) and the hippocampus of the adult brain. NSCs can give rise to neurons, astrocytes and oligodendrocytes. The aim of this study was to differentiate neural stem cells into noradrenergic–like cells in...

متن کامل

Differentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold

       The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013